Pulsed Proton Linacs and Separated Beams

Peter S. Cooper Fermi National Accelerator Laboratory

Ultra-rare decay (kaon) experiments want separated beams

- Previous techniques work but are painful (e.g. P996, CKM)
- How can we do better?
- A CW pulsed Linac makes a kaon beam with:
 - high duty factor
 - •Excellent TOF resolution
 - •Makes separation easier.

FNAL P996 son of BNL E787/949

- Separated K+ beam using Electrostatic separators (**E-P**/mx**B** velocity filters)
- 50kV/cm 600kV across 12 cm: (2m of 5MV/m E field)
- ■Total beam line length 13.2m only 4% of the 550 MeV/c Kaons survive

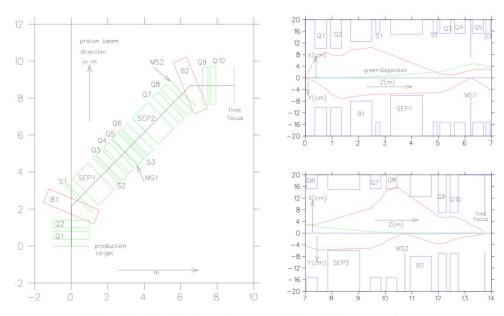


Figure 6.1: Left: The beamline layout. Right: The beam envelopes.

FNAL CKM (E921)

- CKM was designed with an SCRF Separated K+ beam using two 3.9GHzTransverse mode RF stations.
- Separator was a two station polarizer/analyser design. 70m long @ 22 GeV/c
- Designing and fabricating these would have been a big job.

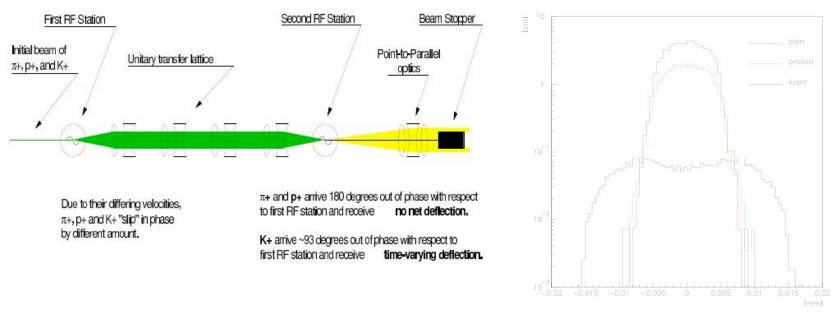
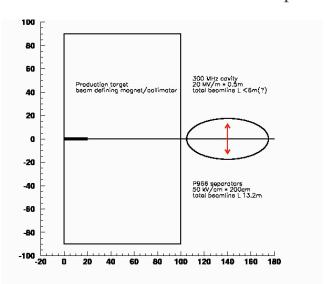
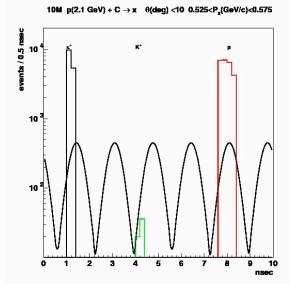




Figure 20: Layout of the beam line.

With ICD2 2.1 GeV CW Linac

- ~10 psec wide T= 2.1 GeV proton pulses at 300 MHz
- ■550 MeV/c +/- 10% secondary beam at 1.4 m has infinite TOF separation
- •Run beam sideways thru a 300 MHz accelerating cavity with transverse E field phased to kick pion and protons but not kaons. [~20MV/m *0.5m]
- Probably can build a beam line of half the P996 length. [Sqrt(0.04)=0.16]
- Separation isn't the only consideration a real beam line design is required I learned this trick from Gordon Thompson of Rutgers and the CPT experiment.

AHIPA - Oct 19, 2009

Peter S. Cooper - Fermilab